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Atomic ordering in non-stoichiometric solid 
solutions in the low-temperature range 
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An expansion is found of the configurational internal energy of a system. The expansion is 
carried out within long-range ordering parameters and static correlation functions. The results 
obtained are demonstrated by a specific example - an analysis of the carbon martensite. A 
number of peculiarities are shown numerically for the low-temperature range related to the 
behaviour of short- and long-range ordering parameters and, in particular, the major role 
played by short-range ordering. 

1 .  I n t r o d u c t i o n  
Non-stoichiometric solid solutions are in most cases 
the subject of experimental investigations in the field 
of atomic ordering. Although there are a number of 
theoretical methods for their investigation [1], the 
problem still remains of finding a convenient and 
comparatively accurate theoretical method, especially 
when dealing with the low-temperature range. 

A low-temperature approximation is known [2] in 
which the small parameter is the deviation from unity 
of the long-range ordering parameter r/. However, 
that parameter is only justifiably small when the 
fluctuations of the local concentrations vanish at a 
temperature of absolute zero, that is, for stoichio- 
metric solutions. For non-stoichiometric solutions the 
assumption of smallness may prove incorrect in the 
temperature range under consideration. A typical rep- 
resentative of such systems is the carbon martensite. 
On one hand, it always obtains strongly non-stoichio- 
metric solutions. On the other hand, according to 
theoretical estimates [3, 4], some of the interaction 
potentials are enormous, attaining values up to 1 to 
2 eV. As a result, the entire temperature range of its 
existence should be regarded as a low-temperature 
one, (Vo/kT >> 1). 

This paper attempts to show some peculiarities of 
the atomic ordering within the low-temperature range 
arising from the lack of stoichiometry. 

2. Low-temperature expansion of 
internal energy 

Starting from the Gibbs ensemble, making use of an 
identical transformation of the partition function Z: 

Z = exp (S/k)[exp (--S/k)Z] = exp (S / k ) (Z )  

(1) 

where S is the entropy and k is Boltzmann's constant. 
We obtain the following expression for the internal 
energy 

U = - k T l n  ( Z )  (2) 

This expression has been used for the first time by 
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Khachaturyan [5]. At the thermodynamic limit, when 
Gibbs' ensemble allows only for the existence of con- 
figurations with the same energy, the arithmetic mean 
in Equation 2 assumes the meaning of a thermodyn- 
amic averaging. 

We will introduce an operator )( according to the 
definition 

2 - 1  
2 - 2 + l (3) 

where 2 = e x p ( -  I2I/kT), while/~ is the Hamiltonian 
of the system. Bearing in mind the identity 

2 + 1  
- �89 - X )  

we obtain from Equation 3 

2 = Xl + ( 2 )  -- 1.(1 -- 2 s  + J(12) (4) 
( 2 ) +  1 

where 

j ~ =  AZ 
2 + A Z '  

a z  = 2 -  ( 2 )  

whereas the internal energy can be represented in the 
form 

U = - k T [ l n  (1 + 2 -  32~ + ~ , X )  

-- l n ( l  -- J ( -  J(i + XIJ(>] 

There is an independence between J( and J(~ 

2 -  ( 2 )  - ( 2 , )  + ( 2 , 2 >  s  

(5) 

[ - 2 ( 2 )  + 2 ( 2 )  + (22~) - x ( 2 , )  

(6) 

This dependence can be obtained starting from the 
definition of AZ, as given by Equation 4, and making 
use of the dependences of Equations 3 and 4. Taking 
into account that (21 ) <~ (~ ' )  a solution for Zi can 
be found by iteration. To a first approximation we 
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obtain 

211) = 2 -  < X }  
1 - 2 < 2 )  + 2<2> (7) 

From Equations 5 and 6 it follows that the internal 
energy can be expressed as a power series depending 
on X alone. 

We shall choose a Hamiltonian of the system in the 
form 

= E,q,, (~) 
tl 

= l /W. . .  >- ~ ~ , ' ~; . .  where /t,, l/n! Z Z " u...k "~, C/ . . .  k, 
0 . . . k  I l v . . . ) .  

V ' ' ;  irreducible interaction potentials; and C~%, ii...~- .~- 
C]', C"k -- local concentration operators which are 
random functions equal to 1 or 0. The suffixes i, j, k 
and #, v, 2 label the crystal-lattice sites and the com- 
ponent types, respectively. 

Making use of  an obvious property of  Cf, 

(C/')" = C / ' +  (1 - C/' )5(n)  for n >~ 0 (9) 

2. can be represented in the form 

2 = H H (l + r;,,c/,<,) 
i > 1' Fv 

T ' "  ; '& '  '~'' • I1 I ] ( l  + ,,k ,-.,,-.,. 
] ' > , , . > k  ). 

T # ' ' ;  = e x p ( -  v " " ; / k T )  - 1 where u...~- 'u...~ 
for 2 can be expanded into a series 
products C/' Q Cs 

.r • . . .  

(lO) 

Equation 10 
m all possible 

2 = 1 + ~ E 2  , - , ,  -, + E E zt;'~" el, c/ o~ 
i/ I~1' (]k /Iv2 

1 
q C, G + (1 l) ~ ' i j . , .  k . . . . . .  

i j . . . k  i n ' . . . ~ .  

where 

z!< 
z/;" = (I + v ,~ ' " ) -  1 = L ;  

T ~'; s ( 1 T;4, T ' '~~(1  + T,';")(1 + /k ~ + ,~-,~ (1 4- -,:/k ,, 

- 1 -  z y -  z ; I  z~; 

The algorithm for constructing an arbitrary coef- 
ficient ~ # "  ' ;  ' An... k is as follows: one must form all the pos- 

guy...>.~ f o r  sible products of  the expressions (1 + "~u..~ 

r 

2 ~< r ~< n, symmetrical in all conjugated suffixes 
(i, if), (j, v) . . . (k, 2). From the product  thus obtained 
one must subtract unity, as well as all the possible 

Hv...2 coefficients Z!/...k with 2 ~< r < n. This way of finding 

r 

the subsequent terms of the series is simpler than 
the diagram technique [6] frequently used. It is also 
very convenient for use by means of computat ional  
techniques. 

Taking into account the obvious equality: 

(1 4- T , . ~ ! I ' . . k ; C ~ " . . .  C~)"  

= 1 + T ' ; ; " ; i ( * C ' / ' Q . . .  (2~ (12)  

where 

/ # v . .  ). �93 2 n = V~}... k / 2kT) ]  1 T q. # [exp ( -  

from Equations 10 and 11 it follows that 

(2 ) "  = 1 4- ff . , - -< '  _,  / 

1 r  

+ 7., Z E 7,,, ~,~,~, L i / . . . k  ~ i  ~ j  * �9 " k 4 -  �9 �9 . 

i j ,  , , k l z v  . . , 2 

(13) 
Z / I n  , . . .  2 where all the coefficients u...k obtain from the coef- 

' # "  ; i j . . .  k ficients T u...~ in precisely the same manner  as Z " ' ' ~  
T~V. . . } ,  in Equation 11 do so from r �9 An expression for X 

can be obtained directly by means of Equation 13. For  
this purpose it suffices that Equation 3 shall be rep- 
resented as a series in the powers of  2 t' and summing 
up all terms at the same products CI 'C] . . .  C~. We 
obtain finally: 

2 = ~ ,  

+ 7 ,  S E , - " . . ' c / ' q '  + ~ i y . . . k  �9 �9 " k �9 �9 �9 

i j . . . k  # v . . . 2  

n 

(14) 
where X~' = - t h ( V f ' / 2 k T ) ,  

Xu ~' ' ' ;  - '";- V""  V."; K I ~ ' ) / Z k T ]  ..., th[(V~k + 'u  + /A- + 

The general expression ' " ;  ~,}...k is built up analogically 

to the coefficient Z;j.~ff " in Equation 11" a normalized 
over 2 k T  sum is formed of all possible potentials 
Vijt a ' . , . 2  ...~- for 2 ~ r ~< n. Taking a hyperbolic tangent of  

n 

this sum we then subtract all possible coefficients 
Xi j#  v . . .  ). . . ,  w i th2  ~< r < n. 

As seen above, in the final run we get an expansion 
w,,' . . . ; .  (which of the internal energy in the parameters " -u . .  ~- 

are in all cases limited in value), as well as in 
(C[' C]' . . . ( ~ ) .  The latter represent the probabilities 

,uv...  2 Pu...* for forming a multiparticle cluster. 

3. Free energy of the carbon tetragonal  
martensite 

The carbon martensite is a convenient example of  the 
low-temperature expansion obtained. For  a qualitat- 
ive analysis, it suffices to confine ourselves to a com- 
paratively rough approximation,  approximating the 
internal energy (Equation 5) by the first term of the 
expansion 

U ~ - 2 k T < J ( >  ~ 2 k T ~  th(Vo/2kT)p~j  (15) 
U 

With this approximation for describing the atomic 
ordering, the long-range parameter  t/ and the pair 
correlation functions go suffice. According to experi- 
mental investigations using the neutron-diffraction 
method [7], the carbon atoms occupy octahedral 
vacancies in the iron lattice forming two sublattices: 
one along the z axis, which fills in predominantly 
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(sublattice I), and the remaining ones along the x and 
y axes (sublattice II). Under these circumstances the 

c?S 
sublattice concentrations can be expressed by means 

OXk of the long-range ordering parameter r/and the carbon 
concentration C in the following way 

C l = C(1 4- 2r/)/3 

C2 = C(1 - ~/)/3 (16) 
x In 

According to the approximation adopted, the 
short-range parameters g0 are of  the form gl~, g12, 
and g22 depending on which sublattice hosts the sites 
i and j. 

For calculating the free energy, it is necessary to 
have the system's entropy in addition to the internal 
energy, as given by Equation 15. For  this purpose we 
shall use a general expression given in [6]�9 In accord- 

and ance with the simplifying assumptions made there, we 
confine ourselves to taking the one- and two-particle 
terms. We obtain finally 

S ~ - k ~ [ Q l n C , +  (1 - Q) ln(1 - Q)] 
i 

2 ~  (C /Q + g 0 )  ln 1 + gg/ "] 
.. C, Cj / 

+ [Ci(1 - ~ )  - go]ln 1 Q(1  Z q )  where: 

( g~ ) c~  + [ ( 1 -  C , ) Q - g o ] l n  1 ( 1 -  C,)C,. 

+ [(1 - C)  (1 -- Q) 4- g,j] 

• In (1 - C,.)(1 - Cj) 

For  the purpose of finding equilibrium values for 
all ordering parameters, we shall make use of the 
condition 

aF OU 8S 
- - - -  T - 0 ( 1 8 )  

OXk OXk OXu 

where X k are short- and long-range ordering par- 
ameters, while U and S are determined by Equations 
15 and 17, respectively. 

Conveniently, this differentiation can be carried 
out in a general form without specifying the crystal- 
lographic structure of the material. As a result we 
obtain 

k ~ l n  1 - - Q  + 2 ~ # X k  

1 - Cj (1 - Cj) (1 - C,.) 

c~C 
4- ~ ~-X--~ In 

(1 Ci) (1 Ca.), / 1 +  

(19a) 

au  @u 
- kT~  ~ th (Vo./2kT) (19b) ,~ Xk 

The system of equations obtained in the particular 
�9 case for the short-range ordering parameters has the 
following solution 

(1 - %)  (C~ + C j -  2C~Cj) - 1 + 

go = 2(1 - %) 

(20) 

1 - 2(1 - ~0) (Ci + q - 2CiC/) 

+ (1 - ~u)-~(C, - c/) -~ 

~/ = exp [ - 2 t h  (Vu/2kT)] 

This solution does not depend explicitly on the 
crystallographic structure of the material, which is due 
to the adopted simplifying assumptions. To this 
approximation the correlation functions g,j depend 
solely on the interaction potentials, the temperature, 
and the sublattice concentrations 6",. and Cj, that is, 
depend parametrically on the long-range parameter q. 
The specific equation for finding an equilibrium value 
of parameter q can already be obtained by thorough 
accounting for the crystallographic structure of the 
material. In this way, the effect of that structure on 
the correlation functions in this case materializes 
indirectly via the parameter q. Taking into account the 
structure of martensite and carrying out summation 
over all sites i and j to determine q, we obtain the 
equation 

g (~F~ Cl ( 1 -  C2) { 
g C T \ 0 q ]  = 21n C~(1 - C,) 4- EJn  

_ R n 
I n  

0 
g12 (Rn) )2 

1 C t (1 7 ~72) 

C2 (1 7 ~7,) (1 - C,) (1 - Ca) 

- In  221} { 1 C2 (1 - C2) + 2 y'  .1,,, 
g22 Rm 

1 + (1 - -  C2) 2 

(1 <(,_ <)) (l + (l 
In g22 

1 (1 - -  C i )  2 C2 (1 

= 0 

(21) 
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T A B L E  I Pair in teract ion potent ia ls  V~ between a ca rbon  a t o m  
si tuated in an  oc tahedra l  site (00�89 and  an o the r  ca rbon  a t o m  in an 
octahedra l  site ( x , ) ,  z + �89 accord ing  to [3] 

n x, 3', z V,,(x, y, z) (eV) J,,, 

A B 

l 0�89 - 0 . 8 3  - 1.20 4 
1 1 2 ~0~  - 0 . 1 1 4  - -0 .14  8 

3 �89 1 0 0.071 8 
4 �89 1 �89 - 0 . 0 3 6 4  - 0 . 0 4 8  16 
5 1 �89 1 0.168 0.010 16 
6 0 23. 0 0.00348 - 0.043 4 

1 3 7 ~ 0 ~- - 0.0666 - 0.052 8 
8 1 •  - 0.028 - 8 2 
9 1 30 - 0 . 0 2 9 6  - 0 . 0 2 9  8 

10 z 3- 1 1 - 0 . 0 0 3 2 9  0.016 16 
11 2 �89 0 - 0.0545 - 0.030 8 
12 I ~ l 0.0008 0.000 Ii5 
I3 2�89189 - -0 .0025 - 0.001 16 
14 23- 0 3 0.0542 0.016 8 

Y,, 

15 1 i I - 0 . 4 4  0.314 8 

16 0 0 1 2.04 1.35 2 
17 1 00  - 0 . 2 8 2  - 0 . 1 9 1  4 
18 1 l 0 - 0 . 1 2 7  - -0 .020  4 
19 l 0 1 - 0 , 0 2 7 6  - 0 . 0 2 8  8 
20 3 z~ - 0 . 0 3 8 4  0.059 16 
21 ~�89 0.244 0.015 8 
22 1 1 l - 0 . 0 2 5 4  0.022 8 
23 2 0 0  - 0 . 0 4 1 2  - 0 . 3 1 6  4 
24 0 0 2  0.224 0.13 2 
25 ~2a~ - 0 . 2 9 0  - 0 . 0 1 5  8 
26 2a�89 - 0 . 0 0 6 0 5  - 0 . 0 1 2  16 
27 2 1 0 - 0.024 8 
28 0 1 2 - 0.036 8 
29 20  1 - 0 . 0 1 8  8 

J,,, J,,, are the coord ina t ion  numbers .  

where N is the number of all octahedral sites in the 
crystal; J . ,  Jm are the numbers of atoms in the respect- 
ive coordination spheres; Rn, Rm are the radii of these 
spheres; and C~, and C2 and C are defined according 
to Equation 16. 

4 .  R e s u l t s  o f  c o m p u t e r  s i m u l a t i o n  
The form of Equations 20 and 21 is useful for a direct 
determination of atomic ordering by means of  com- 
putional techniques. Here the interaction potentials 
between the carbon atoms are free theoretical par- 
ameters. From theoretical estimates [3, 4] the inter- 
action radius in martensite is known to be large, so 
that to arrive at reliable results one should account for 
20 to 30 coordination spheres. In our opinion, the 
most realistic set of  interaction constants has been 
presented in [3], which forms the basis of our esti- 
mates. This set is listed in Table I, column A. To 
compare the results, we have also carried out calcu- 
lations using another set of potentials (Table I, 
column B) taken from the same reference [3]. A large 
number of  potentials leads to a respectively large 
number of variational parameters, namely 50 different 
go in case A and 54 g0 in case B, plus a single long- 
range ordering parameter r/in both cases. Irrespective 
of the large number of variational parameters, finding 
their equilibrium values does not pose any serious 
problem. 

As the correlation functions are obtained directly 
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Figure 1 Tempera tu r e  dependence  of  the long- range  order ing  par-  
ameter  r / for  a set A or B of  potent ia ls  accord ing  to Table  I, and  at  
different ca rbon  concent ra t ions ,  la  to 7a cor respond  to 1.5, 2.5, 4, 
5, 6 and  7, and  1 0 a t %  carbon;  lb  to 5b cor respond  to 1.5, 4, 5, 7 
and  10at  % carbon.  

from Equation 20, it remains to examine the zeros of  
the function defined by Equation 21. As a result of  the 
numerical analysis, we obtain the dependence of the 
parameter t/ on temperature at various carbon den- 
sities. These results are shown graphically in Fig. 1 
and relate to the potential sets A and B, respectively, 
from Table I. From the dependences shown, it follows 
that in all cases the order-disorder phase transitions 
are first-order with hysterisis. The typical temperature 
dependence of  the correlation functions is shown in 
Fig. 2 and refers to case A. From the entire set gij in 
Fig. 2, we show the ones with the largest absolute 
magnitudes, both atoms are from the first sublattice 
and whose interaction potentials are also the largest, 
that is, gH (1/2 1/2 1/2) and •11 ( 0 0  1 ). 

5. Discussion 
The general features of the atomic ordering in stoi- 
chiometric solid solutions cited in the Introduction are 
to a large extent clarified. Unlike the stoichiometric 
solid solutions, the nonstoichiometric ones remain 
almost unexplored, particularly in the low-temperature 
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Figure 2 T e m p e r a t u r e  dependence  of  the correla t ion func t ions  gll 
(1�89189 and  g~ (00 I) for set A of  potent ia ls  V,, of  Table  I at different 
ca rbon  a t o m  concent ra t ions .  1, 2, 3, 4, gJl ( ~ )  at C = 4, 5, 7 and  
1 0 a t %  carbon;  5, 6, 7, 8, gH (001)  at C = 4, 5, 7 and  1 0 a t %  
carbon;  9, C~ at  C = 1 0 a t %  carbon.  
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range. These problems have been considered in [3], but 
the authors have used an expansion in ~j/kT, that is, 
the high-temperature approximation. Also, they have 
neglected the short-range ordering parameters. Thus 
their results differ largely from the ones presented 
here. This holds true for the long-range parameter I/. 
Although the latter parameter depends strongly on the 
specific set of potentials V,j, it follows from Fig. 1 that 
there are common relationships. First, the zero tem- 
perature does not imply that the parameter r/should 
assume the ultimately allowed value r/ = 1; on the 
contrary, it can be maximal at higher temperatures. 
This behaviour is observed at all concentrations 
studied, and in particular the lower ones. (These 
effects are easily seen from the graphical relationships 
presented in Fig. 2.) At very low concentration (curve 
1 in Fig. l a), there can also exist an unordered phase 
along with the ordered one, the two phases being 
separated by a potential barrier in between. These 
effects do not appear in the traditional investigation 
carried out in [3]. Estimates for the critical tempera- 
ture reported in [3] at the same interaction potentials 
are superior to ours by an order of magnitude. Bearing 
in mind the results of the neutron diffraction [7] 
obtained for martensite with 6 .7a t% carbon and 
leading to t/ ~ 0.7, they agree with our calculations, 
which is not easy to explain by means of the traditional 
analysis. 

A second peculiarity of the atomic ordering is con- 
nected with the correlation functions. The correlation 
functions for stoichiometric solid solutions are known 
to vanish at a temperature of absolute zero because 
the concentrations of all the sub-lattices assume 
external values of 0 or 1, equivalent to the disappear- 
ance of the fluctuations themselves. For nonstoichio- 

metric solutions, there are always sublattices with 
concentrations different than 0 or 1. Therefore in such 
solutions there should in principle be non-vanishing 
correlation functions at zero temperature. From Fig. 
2 it can be seen that their absolute values in that 
temperature range are maximal. 

For stoichiometric solid solutions, the probability 
of finding two atoms in sites i and j, p~j = Cir. + go, 
is usually determined by the product Ci~ (except per- 
haps for the critical range), while the correlation func- 
tions go make a small contribution. In this case, Pil 
differ several-fold by the product C ~  within the entire 
temperature range at all the concentrations con- 
sidered. This implies that in this type of system short- 
range ordering effects dominate over long-range ones, 
and should not be underestimated. 
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